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The paper focuses on two interrelated problems: developing physically sound low-order models

(LOMs) for atmospheric dynamics and employing them as novel time-series models to overcome

deficiencies in current atmospheric time series analysis. The first problem is warranted since

arbitrary truncations in the Galerkin method (commonly used to derive LOMs) may result

in LOMs that violate fundamental conservation properties of the original equations, causing

unphysical behaviors such as unbounded solutions. In contrast, the LOMs we offer (G-models) are

energy conserving, and some retain the Hamiltonian structure of the original equations. This work

examines LOMs from recent publications to show that all of them that are physically sound can be

converted to G-models, while those that cannot lack energy conservation. Further, motivated by

recent progress in statistical properties of dynamical systems, we explore G-models for a new

role of atmospheric time series models as their data generating mechanisms are well in line with

atmospheric dynamics. Currently used time series models, however, do not specifically utilize the

physics of the governing equations and involve strong statistical assumptions rarely met in real

data. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942586]

Two major sources to advance our understanding of

atmospheric dynamics are governing equations and field

observations. The equations, however, present enormous

mathematical challenges, whereas observed records are

commonly analyzed via time series models, often involv-

ing unrealistic assumptions. Following Kolmogorov

described in Ref. 1, Lorenz,2,3 and Obukhov,4,5 a popular

approach to handle the governing partial differential

equations (PDEs) is to approximate them with finite sys-

tems of ordinary differential equations (ODEs), called

low-order models (LOMs). One such LOM is the cele-

brated Lorenz model3 of just three ODEs, but attempts

to extend it to larger, more realistic models of atmos-

pheric dynamics have sometimes led to LOMs exhibiting

unphysical behaviors. These do not occur in the LOMs

we develop (G-models,
6

the simplest one equivalent
7

to

the Lorenz model). We show that all recent physically

sound LOMs can be converted to G-models, while those

lacking such presentation are not energy-conserving.

This suggests that G-models may offer a general frame-

work for deriving effective LOMs in atmospheric dynam-

ics. In particular, G-models are proposed here as novel

atmospheric time series models, thereby utilizing their

probabilistic facet. In contrast to common ones (bor-

rowed from traditional time series analysis and having

little to do with the atmosphere per se), G-models are

derived from the underlying equations, and so their sta-

tistical behavior is in better agreement with reality.

I. INTRODUCTION

Solutions of the governing nonlinear PDEs of atmos-

pheric dynamics are elusive, but their easier to handle

approximations, the low-order models (LOMs), reveal basic

mechanisms and their interplay through focusing on key ele-

ments and retaining only minimal numbers of degrees of free-

dom. LOMs are commonly derived from the PDEs via the

Galerkin method: fluid dynamical fields are expanded into in-

finite series in time-independent basis functions (commonly

Fourier modes), then the series are truncated and substituted

into the PDEs yielding a finite system of ODEs (the LOM)

for the time evolution of the coefficients in the truncated

expansions. Obukhov4 showed that the simplest nonlinear

LOM is a 3-mode (3-ODEs) system equivalent to the Euler

gyroscope and suggested systems of coupled Euler gyro-

scopes for modeling homogeneous flows.5 Earlier Lorenz2

had introduced an equivalent LOM as the simplest model of

atmospheric dynamics. Pasini and Pelino1 discuss in a geo-

metric framework the Lorenz2,3 and Obukhov4 systems as

included in a general class of 3-mode LOMs introduced by

Kolmogorov in 1958 at his seminar on dynamical systems.

Both Lorenz and Obukhov insisted that LOMs should

retain conservation properties of the original PDEs.

Arbitrary truncations in the Galerkin method, however, can

lead to models that lack the fundamental physical properties

of the original equations, such as energy conservation (here

and throughout the paper understood as conservation in the

limit of no damping and forcing). The problem was

addressed6,7 by constructing LOMs in the form of coupled 3-

mode nonlinear dynamical systems known in mechanics as

Volterra gyrostats. The Volterra gyrostat,8,9a)Electronic mail: aglu@purdue.edu.
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I1 _x1 ¼ ðI2 � I3Þx2x3 þ h2x3 � h3x2;

I2 _x2 ¼ ðI3 � I1Þx3x1 þ h3x1 � h1x3;

I3 _x3 ¼ ðI1 � I2Þx1x2 þ h1x2 � h2x1;

(1)

is a classical system, which admits various mechanical and

fluid dynamical interpretations (e.g., Ref. 10 and 11). It can

be thought of as a rigid body containing an axisymmetric

rotor that rotates with a constant angular velocity about an

axis fixed in the carrier. In this interpretation, Ii are the princi-

pal moments of inertia of the gyrostat, x is the angular veloc-

ity of the carrier body, and h is the fixed angular momentum

caused by the relative motion of the rotor (the gyrostatic

motion). In Eqs. (1) and everywhere below, the overdot

means differentiation with respect to time. Eqs. (1) have two

quadratic invariants, the kinetic energy, E ¼
P

Iix2
i =2, and

the square of the angular momentum, C ¼
P
ðIixi þ hiÞ2.

Note that unlike linear friction terms, linear terms in Eqs. (1)

(linear gyrostatic terms) do not affect the conservation of

energy nor the conservation of phase space volume.

We call two LOMs equivalent if one can be obtained

from the other by a linear change of variables. For example,

it is often convenient to write Eqs. (1) in terms of variables

Xi ¼
ffiffiffi
Ii

p
xi (then the kinetic energy becomes E ¼

P
X2

i =2)

_X1 ¼ pX2X3 þ bX3 � cX2;

_X2 ¼ qX3X1 þ cX1 � aX3;

_X3 ¼ rX1X2 þ aX2 � bX1;

(2)

where p ¼ JðI2 � I3Þ; q ¼ JðI3 � I1Þ; r ¼ JðI1 � I2Þ;
pþ qþ r ¼ 0; a ¼ Jh1

ffiffiffiffi
I1

p
; b ¼ Jh2

ffiffiffiffi
I2

p
; c ¼ Jh3

ffiffiffiffi
I3

p
.10 More

importantly, the simplest Volterra gyrostat (I1¼ I2 and

h2¼ h3¼ 0 in Eqs. (1), or r¼ b¼ c¼ 0 in Eqs. (2)) in a

forced regime (i.e., with added constant forcing and linear

friction), which can be written6 as

_x1 ¼
_x2 ¼
_x3 ¼

�x2x3

x3x1 � x3

x2

������

������
�a1x1 þ F;
�a2x2;
�a3x3;

(3)

was proved7 to be equivalent to the celebrated Lorenz (or

Lorenz-63) model3 of two-dimensional Rayleigh-B�enard

convection (2D RBC),

_x ¼ rðy� xÞ; _y ¼ �xzþ rx� y; _z ¼ xy� bz; (4)

(for this reason we call (3) the Lorenz gyrostat). In Eqs. (3)

and others below, separate Volterra gyrostats are shown

within vertical bars, variables are denoted by xi, friction

coefficients by ai, forces by F.

It was found12,13 that effective LOMs for atmospheric

circulations and turbulence could be developed as systems of

coupled gyrostats (2). For example, the following 5-mode

system:14

_x1 ¼
_x2 ¼
_x3 ¼
_x4 ¼
_x5 ¼

�x2x3

x3x1 � x3

x2

�x4x5

x5x1 � x5

x4

����������

����������

�a1x1 þ F;
�a2x2;
�a3x3;
�a4x4;
�a5x5;

����������
(5)

offers an analog of the Lorenz model (4) for 3D RBC, where

two Lorenz gyrostats describe the dynamics in two perpen-

dicular planes.

Also, similar to the Arnold’s definition of the n-dimen-

sional rigid body,15 the n-dimensional gyrostat was intro-

duced6,7 as the n-dimensional analog of the Volterra

equations (1), with Eqs. (1) recovered by setting n¼ 3. This

construction permits another look at system (5) as a 4-

dimensional gyrostat (in a forced regime),6 and the 6-mode

extension of the Lorenz model (4), recently suggested16 as a

more appropriate minimal model of 2D RBC than (4), proves

equivalent to another 4-dimensional gyrostat.17

We call all gyrostat-based LOMs (Volterra gyrostats,

coupled gyrostats, n-dimensional gyrostats) gyrostatic low-
order models,6 or for brevity G-models. G-models conserve

energy in the dissipationless limit, and their modular nature

enables the creation of new physically sound LOMs through

the addition or removal of gyrostats in existing models.

The latter, for example, proves instrumental in developing

Hamiltonian LOMs,6 which is important since the conserva-

tive part of various atmospheric models (the primitive equa-

tions, shallow water equations, quasi-geostrophic equations) is

Hamiltonian (e.g., Ref. 18). A finite-dimensional Hamiltonian

dynamical system may be written18,19 as

_xi ¼ Jij
@H

@xj
; (6)

where H is the Hamiltonian function and J is an antisymmet-

ric matrix (Jij – Jji) satisfying the Jacobi conditions,

Jil
@Jjk

@xl
þ Jjl

@Jki

@xl
þ Jkl

@Jij

@xl
¼ 0; (7)

(repeated indices imply summation). Now, all G-models pos-

sess a constant of motion (representing some form of energy)

H ¼
X

x2
i =2; (8)

which is a good candidate for the Hamiltonian function, and

they all are readily presented in form (6) with an easily deter-

mined antisymmetric matrix J, for which it is pretty straight-

forward to check the Jacobi conditions (7).6 For example,6

G-model (2) has the Hamiltonian form (6) with H ¼
ðx2

1 þ x2
2 þ x2

3Þ=2 and antisymmetric matrix

J ¼
0 �c px2 þ b
c 0 qx1 � a

�ðpx2 þ bÞ �ðqx1 � aÞ 0

0
@

1
A:

Similar to the Volterra gyrostat (1), other G-models may

have constants of motion in addition to (8) (e.g., Refs. 6, 10,

17, and 20).

In this paper, we explore the LOMs of 2D RBC (the 3D

case will be addressed separately). Of fundamental importance

in nonlinear dynamics, where it is the most carefully studied

example of nonlinear systems exhibiting self-organization and

transition to chaos, RBC (e.g., Ref. 21) promotes understanding

of many real-world fluid flows by providing the principal mech-

anism of mesoscale shallow convection in the atmosphere22 and

023119-2 A. Gluhovsky and K. Grady Chaos 26, 023119 (2016)
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being also important for studies of flows in oceanic flows, in the

liquid core of the Earth, and in astrophysics.

We have found that all physically sound LOMs of 2D

RBC that have appeared in recent publications are equivalent

to G-models, while the LOMs that cannot be converted to

gyrostats exhibit violations of energy conservation (Sec. II).

This suggests that G-models may offer a general framework

for developing effective LOMs for studies in atmospheric

dynamics (some have already been variously employed in

this area, see Refs. 6 and 17 and references therein).

A new promising application of G-models (introduced

in Sec. III) is motivated by current problems with handling

atmospheric data on one hand and by recent progress in sta-

tistical properties of dynamical systems on the other. It has

been proved, in particular, that Lorenz model (4) flow pos-

sesses a physical ergodic invariant probability measure23 and

satisfies the central limit theorem,24,25 i.e., series of observa-

tions on this model may exhibit statistics of sequences of

random variables. In Sec. III, G-models are explored for the

new role of atmospheric time series models, thus infusing

more physics in atmospheric time series analysis.

A summary of our results and further discussion are

presented in Sec. IV.

II. PHYSICALLY SOUND LOW-ORDER MODELS OF 2D
RAYLEIGH-B�ENARD CONVECTION

A. Equations and Galerkin expansions

The 2D RBC (a buoyancy-driven flow between two hor-

izontal, isothermal surfaces, with the lower one at higher

temperature) is commonly described by the equations in the

Boussinesq approximation (e.g., Refs. 26–28)

Dr2w
Dt

¼ @h
@x
þ �r4w;

Dh
Dt
¼ @w
@x
þ jr2h; (9)

where w is the stream function so that v ¼ ð�@zw; @xwÞ is the

velocity field, D=Dt ¼ @=@tþ v � r is the so-called material

derivative, all quantities are dimensionless (as in Ref. 27), x
is the horizontal coordinate, z is the vertical one, h is the devi-

ation of the temperature from a linear conduction profile, � is

the kinematic viscosity, and j is the thermal conductivity.

The so-called “free” boundary conditions are commonly

imposed at both the top and the bottom of the fluid, mostly as26

w ¼ r2w ¼ h ¼ 0; z ¼ 0; p: (10)

Via expanding w and h into infinite series in time-

independent basis functions satisfying boundary conditions,

selecting a finite number of the terms in the expansions, and

substituting the latter in Eqs. (9), numerous LOMs for 2D

RBC have been obtained, some of them are energy-

conserving, whereas others are not.

Widely used are the following Galerkin expansions:3,16,26

wðt; x; zÞ ¼
X1
m¼0

X1
n¼1

ðwm;nðtÞ sin amxÞ þ/m;nðtÞ cos amxÞ sin nz;

hðt; x; zÞ ¼
X1
m¼0

X1
n¼1

ðhm;nðtÞ cos amxÞþ#m;nðtÞ sin amxÞ sin nz:

(11)

Treve and Manley27 have provided necessary and suffi-

cient conditions for a LOM of 2D RBC to be energy-

conserving. Their l-order Gelerkin expansion,

wðlÞðt;x; zÞ ¼
X

E

wm;nðtÞ sinamx sinnz;

hðlÞðt;x; zÞ ¼
X

E

hm;n sinamx sinnzþ
X�n

n¼1

hm;nðtÞ sinnz; (12)

is defined by the first l terms of the ascending sequence

q1;1 ¼ qm1;n1
� qm2;n2

� � � � qml;nl
(13)

of the eigenvalues qm,n¼ a2m2þ n2 of the linear problem

that determines the basis functions for w(t, x, z), and the

sums in Eqs. (12) are over the set E of pairs (mi, ni) from Eq.

(13), mi; ni > 0; �n ¼ max1�i�lni.

Boundary conditions (10) allow for the derivation of the

most general LOMs using the full Galerkin expansions of w
and h. Additional periodic horizontal boundary conditions27

@zw ¼ @xh ¼ 0; x ¼ 0; p=a; (14)

where a is the inverse aspect ratio, exclude some modes

from the expansions of w and h, which permits only a certain

class of LOM, narrower than that allowed when using the

boundary conditions (10) only. The less explicit horizontal

boundary conditions that the fluid is periodic in the horizon-

tal (i.e., (x, z) 2 [0, 2p/a]� [0, p]) are sometimes employed,

e.g., to allow for vertical shear.28

B. Results

Tables I and II sum up our results on important LOMs

to the effect that all those energy-conserving among them

are presentable as G-models.

The upper half of Table I lists four LOMs derived fol-

lowing the mode selection procedure suggested in Ref. 27.

All such LOMs may be converted to G-models.33 The first-

order approximation LOM (based on q1,1 in Eq. (13) and

therefore on three modes: w1,1, h1,1, and h0,2) is equivalent to

the Lorenz model (4) and gyrostat (3). The next one is the

LOM12 based (when a< 1) on q1,1, q2,1 and, accordingly, on

modes w1,1, h1,1, h0,2, w2,1, h2,1

_x1 ¼
_x2 ¼
_x3 ¼
_x4 ¼
_x5 ¼

�x2x3

x3x1 � x3

x2

�dx4x5

dx5x1 � dx5

dx4

������������

������������

�a1x1 þ F;

�a2x2;

�a3x3;

�a4x4;

�a5x5;

������������

(15)

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1;1=q2;1

q
. Both these G-models are

Hamiltonian with H ¼
P

x2
i =2, while the next two are not

(though they might be that with a different Hamiltonian

function, see an example below).

Interestingly, the conservative parts of LOMs (5) and

(15) look similar (recall, however, that friction coefficients ai

and forces F are different). Moreover, a LOM equivalent to
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(5) was later suggested34 (using expansion (11)) as an

improvement on the Lorenz model (4).

The four LOMs in the bottom half of Table I exemplify

the case when still using expansions expansions (12), the

mode selection in Ref. 27 is violated. The resulting LOM

then may still be energy-conserving, as the LOM considered

in Ref. 30 (based on modes w1,1, h1,1, h0,2, h1,3, h0,4, with h0,6

required in Ref. 27 missing) thus permitting, as we have

found, a G-model form

_x1 ¼
_x2 ¼
_x3 ¼
_x4 ¼
_x5 ¼

�x2x3

x3x1 � x3

x2

þx3x4

�x1x3 þ2x3x5

�2x3x4

����������

����������

�a1x1 þ F;
�a2x2;
�a3x3;
�a4x4;
�a5x5;

����������

����������
(16)

Or the resulting LOM may prove to be not energy-

conserving (and thus cannot be converted to a G-model),

such as the system in Ref. 31 based on modes w1,1, h1,1, h0,2,

w1,3, h1,3, h0,4 (where again h0,6 is missing) and a well-

known 14-mode extension32 of the Lorenz model (4). Then

adding a few modes in Galerkin expansions may produce

energy-conserving LOMs (having accordingly a G-model

form); for example, in the case of the 6-mode model in Ref.

31, adding the h0,6 mode results in a 7-mode G-model in

Table I.

Table II lists LOMs derived from Galerkin expansions

in Ref. 26. Although the 3-mode truncation based on w1,1,

h1,1, h0,2 again produces the Lorenz model (4) and the next

four LOMs are G-models, other truncations of those expan-

sions pursued in a number of studies have not necessarily

resulted in energy-conserving LOMs. In Table II, the latter is

exemplified by the famous 6-mode Howard-Krishnamurti

model35 of convection with shear that, however, proved lack-

ing the energy and total vorticity conservation. These defi-

ciencies have been remedied by adding a term to a Galerkin

temperature expansion28 and another term to the stream

function expansion,36 which has resulted in a 8-mode G-

model composed of six gyrostats.20 By deleting three of

these gyrostats, a new 6-mode system was obtained20 still

describing the desired effect while respecting the conserva-

tion laws.

Note that an important Hamiltonian LOM by Bihlo and

Staufer,16 in gyrostatic form,17

_x1 ¼
_x2 ¼
_x3 ¼
_x4 ¼
_x5 ¼

�x2x3

x3x1 � c1x3

c1x2

�x4x5

x5x1 � c1x5

c1x4

�c2x4

þc2x2

������������

������������

�c3x5

þc3x3

������������

������������

������������

(17)

has a Hamiltonian function different from (8) (and therefore

marked “No” in the column of Table II indicating

Hamiltonian systems with H ¼
P

x2
i =2), but it becomes a

Hamiltonian system with Hamiltonian function (8) simply

by deleting one gyrostat (with coefficients c3). The latter also

illustrates how G-models enable the creation of new physi-

cally sound LOMs via addition or removal of gyrostats in

existing models.

In summary, there is no way to determine a priori
whether a LOM based on a particular mode selection will be

energy-conserving, unless the procedure in Ref. 27 was fol-

lowed. In contrast, G-models obtained via whatever Galerkin

truncations are always energy-conserving and sometimes

easy to modify to obtain smaller G-models (including

Hamiltonian ones) describing the effect of interest.

Although we chose to focus on RBC in this paper, gyro-

static models have been developed for a range of other appli-

cations in atmospheric dynamics. Among these are other

convection problems (e.g., Refs. 6, 17, and 20), the baro-

tropic, quasigeostrophic potential vorticity equation for a

beta-plate atmosphere with topography,20 and shell models

for 2D and 3D turbulence,10,13 where individual Volterra

gyrostats are used as building blocks to construct the energy-

conserving part of the LOM.

Section III discusses a new application of G-models that

capitalizes on their probabilistic facet.

TABLE I. LOMs with various number of modes (N) kept in Galerkin expansions (12). Other columns specify whether or not they are energy-conserving (EC),

gyrostatic (G), and Hamiltonian (H) with Hamiltonian function (8).

Modes in Galerkin expansions N EC G H

w1,1, h1,1, h0,2 (Ref. 3) 3 Yes Yes Yes

w1,1, h1,1, w2,1, h2,1, h0,2 (Ref. 12) 5 Yes Yes Yes

w1,1, h1,1, w2,1, h2,1, w1,2, h1,2, h0,2, h0,4 (Ref. 29) 8 Yes Yes No

w1,1, h1,1, w2,1, h2,1, w3,1, h3,1, w1,2, h1,2, h0,2, h0,4 (this study) 10 Yes Yes No

w1,1, h1,1, h0,2, h0,4, h1,3 (Ref. 30) 5 Yes Yes No

w1,1, h1,1, h0,2, h0,4, h1,3, w1,3 (Ref. 31) 6 No No No

w1,1, h1,1, h0,2, h0,4, h1,3, w1,3, h0,6 (this study) 7 Yes Yes No

w1,1, h1,1, w1,3, h1,3, w2,2, h2,2, w3,1, h3,1, w3,3, h3,3, w2,4, h2,4, h0,2, h0,4 (Ref. 32) 14 No No No

TABLE II. LOMs with various number of modes (N) kept in Galerkin

expansions (11). Other columns specify whether or not they are energy-

conserving (EC), gyrostatic (G), and Hamiltonian (H) with Hamiltonian

function (8).

Modes in Galerkin expansions N EC G H

w1,1, h1,1, h0,2 (Ref. 3) 3 Yes Yes Yes

w1;1; h1;1; /1;1; #1;1; h0;2 (Ref. 34) 5 Yes Yes Yes

w1;1; h1;1; /1;1; #1;1; h0;2 (Ref. 16) 5 Yes Yes No

w1;1; h1;1; /1;1; #1;1; h1;3; #1;3; h0;2; h0;4 (this study) 8 Yes Yes No

w1;1; h1;1; w0;1; /1;2; #1;2; h0;2 (Ref. 35) 6 No No No

w1;1; h1;1; w0;1; /1;2; #1;2; h0;2; w0;3; h0;4 (Ref. 20) 8 Yes Yes No

w1;1; h1;1; w0;1; /1;2; h0;2; w0;3 (Ref. 20) 6 Yes Yes No
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III. NOVEL ATMOSPHERIC TIME SERIES MODELS

A. Problems in current atmospheric time series
analysis

Consider, as a typical example, an aircraft record of the

vertical velocity of wind in a convective boundary layer

taken at 50 m above Lake Michigan during an outbreak of a

polar air mass over the Great Lakes region.37 The sample

mean, variance, skewness, and kurtosis computed from its

nearly seven-minute stationary segment (shown in Fig. 1)

are �0.04, 1.06, 0.83, and 4.10, respectively.

The elevated skewness and kurtosis (from values spe-

cific for a normal distribution, 0 and 3) are attributed to the

occurrence of coherent structures in turbulent flows,39 but

sample characteristics are just point estimates of the true

values of the parameters, and therefore, confidence intervals

(CIs) are necessary to learn how far one can trust such num-

bers. Construction of CIs for parameters of the unknown dis-

tribution of a stationary time series from observed records is

central to obtaining reliable statistical inference from atmos-

pheric records of limited length, yet difficult in practice due

to general problems in atmospheric time series analysis.

A CI traps the unknown parameter with a specified cov-
erage probability (say, 0.90). CIs are determined by the data

generating mechanism (DGM) and depend on the sample

size. For example, a 0.90 (or 90%) CI for the mean of AR(1)

(first order autoregressive process widely used in atmos-

pheric studies as a default model for correlated series)

Yt ¼ /Yt�1 þ �t (18)

obtained from a record of length n with sample mean
�Y is approximately �Y61:645r=

ffiffiffi
n
p ð1� /Þ. In Eq. (18),

0 < / < 1 and �t is a white noise process with mean 0

and variance r2.

When the DGM is known, CIs can be found analytically

(as in the above example, where the DGM is given by the

linear model (18)) or, when analytical results are unavail-

able, computed from numerous records of length n generated

by the known (even nonlinear) model. In practice, however,

the DGM is unknown, and so CIs are commonly computed

from linear models fitted to the data, thereby often resulting

in erroneous CIs, particularly when the real DGM is nonlin-

ear,40 which is typical for atmospheric time series (generated

by the inherently nonlinear system). Besides, CIs for the

skewness cannot be based on linear models (implying zero

skewness), while finding an appropriate (nonlinear) model

among conventional time series models is problematic, as

their DGMs are inherently different from the original one.

Models can be avoided by using the bootstrap41 or other

computer-intensive statistical methods such as subsam-

pling,42 where the above numerous records are replaced by

resamples/subsamples obtained from the single record at

hand. Atmospheric records, however, are typically too short

to satisfy the underlying asymptotic conditions, and so in

practice approximating models (those sharing statistical

properties with the series under study) are used to assess the

actual coverage and to adjust the subsampling CIs

accordingly.

For a subsampling treatment of the series in Fig. 1, 38

the following approximating model43 was used (referred

below to as model A):

Xt ¼ Yt þ aðY2
t � 1Þ; (19)

where Yt is an AR(1) process in Eq. (18) with r2
� ¼ 1� /2

(so that r2
Y ¼ 1). The reason behind choosing model (19)

was that at a¼ 0.145, the first four moments of Xt (0, 1.04,

0.84, 3.95, respectively) were close to the corresponding

sample characteristics of the series in Fig. 1 (�0.04, 1.06,

0.83, and 4.10), while setting / ¼ 0:83 served to fairly imi-

tate its dependence structure as characterized by autocorrela-

tion functions. One could then presume that the model is

adequate for fixing subsampling CIs, but there is no guaran-

tee that other statistical properties of the data and the model

do not differ to considerably affect the intended applications.

Again, the efficacy of a CI in both cases depends on the

record length and on how well the DGM of the model

approximates the true one. The former is given, but G-

models can improve the latter.

B. A simple G-model for the example data set

As an alternative to model A, Lorenz model (4) (or its

equivalent, G-model (3)) looks like a natural choice, since

(a) it has well-defined statistical properties mentioned in

Section I, and (b) the basic mechanism responsible for pro-

ducing the series in Fig. 1 is RBC. But the model has proved

disappointing, since the skewness and kurtosis calculated

from its long records were S¼ 0 and K¼ 2.3, both far off the

sample characteristics of the observed series (S¼ 0.83,

K¼ 4.1), with the respective subsampling CIs (0.56, 1.1) and

(3.7, 4.5).

Consider, however, that in addition to RBC as its princi-

pal mechanism, the dynamics over Lake Michigan involves

a host of others, such as large-scale vertical motion, cloud

top entrainment instability, latent heat release, and gravity

waves.22

One more feature of G-models (of particular importance

for this study) is that mechanisms peculiar to atmospheric

FIG. 1. Record of 20-Hz aircraft vertical velocity measurements over Lake

Michigan. Adapted with permission from Gluhovsky, Nonlinear Processes

Geophys. 18, 537 (2011). Copyright 2011 Copernicus Publications. The data

are available at http://weather.eaps.purdue.edu/w1.txt.
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dynamics (e.g., stratification, rotation, topography, shear,

magnetohydrodynamic effects) bring about linear gyrostatic

terms in these models. For example, the Charney-DeVore

model,44 which has served for a long time as a paradigm of

the atmospheric circulation in midlatitudes, involves two

such mechanisms, topography and rotation. Accordingly, its

G-model version20 contains gyrostats, exemplified by the fol-

lowing two:

_x1 ¼
_x2 ¼
_x3 ¼

b1x3

q1x3x1 � a1x3

�q1x1x2 þ a1x2 � b1x1

������

������
(20)

_x2 ¼
_x4 ¼
_x6 ¼

p2x4x6

q2x6x2 þ b2x6

r2x2x4 � b2x4

������

������
(21)

that have two kinds of linear gyrostatic terms: those with

coefficients ai are due to topography and those with bi are

caused by rotation. Note also that both gyrostats differ from

the Lorenz gyrostat (3), namely, there are two pairs of linear

gyrostatic terms in gyrostat (20) and three nonlinear terms in

gyrostat (21).

These additional mechanisms would have resulted in

new linear gyrostatic terms in the G-model (as explained in

the end of Section II) had we attempted to derive it rigor-

ously from the governing equations. For now, just one pair

of linear gyrostatic terms as representing all such mecha-

nisms was added in Eqs.(3) (those with coefficient c in Eqs.

(22) below), leading to a new G-model (model B)

_x1 ¼
_x2 ¼
_x3 ¼

�x2x3 þ cx3

x3x1 � x3

x2 � cx1

������

������
�a1x1 þ F;
�a2x2;
�a3x3;

(22)

In a dramatic improvement, the skewness and kurtosis in

model B at c¼ 0.35 proved close to those of the observed se-

ries and of model A (see Table III; the results are analytical

for model A38 and obtained from very long records for

model B). The same is attained for the three autocorrelation

functions (by tweaking parameter / in Eqs. (18) and sam-

pling rates in series generated by Eqs. (22)).

Thus the basic statistical properties of the two models

are similar, but model B has an important advantage in that

even this very simple G-model shares some fundamental

physics with the original system. This helps (a) to better

align statistical properties of series generated by the model

with those of observed series beyond first moments and auto-

correlation functions, (b) to avoid a difficult task of selecting

nonlinear time series models solely from statistical charac-

teristics estimated with questionable accuracy, and (c) to run

meaningful Monte Carlo simulations, particularly when esti-

mators are more sensitive to properties of the DGM.

C. Further steps

In general, to construct a G-model for an observed

series, one should start with appropriate governing equations,

decide on the “size” of the model, then derive its initial

version from these equations,6,16,17,45 and finally tweak thus

obtained model (add other relevant processes, obtain a model

in a Hamiltonian form,6 adjust parameters) to make statisti-

cal characteristics of the model closer to those of the

observed series. This is how model B was obtained by

tweaking Lorenz model (4) for 2D RBC. Had model B

proved inadequate for an intended use, one could consider a

G-model for 3D RBC instead (as the real flow is 3D), such

as models (5) or an 8-mode one in Ref. 14.

Yet larger G-models should be even more useful, since

they provide increasingly better approximations to the orig-

inal system. This is because the dynamics generated by fun-

damental mathematical models of fluid flows are in a sense

“asymptotically finite-dimensional” (see the review Ref.

46). Moreover, when in addition to buoyancy, other mecha-

nisms contributing to atmospheric boundary layer dynamics

are added, the resulting G-models become more and more

realistic, which should favorably reflect in their statistical

behavior and feasibility for atmospheric time series

analysis.

Among G-models useful in other areas of atmospheric

dynamics, which can also be extended to considerable size

if needed, are shell models of turbulence,10,13 models of a

barotropic atmosphere with topography and of the thermal

convection with shear,20 and Hamiltonian LOMs.6

IV. CONCLUDING REMARKS

Stripped of many attributes of the original equations

(one conspicuous difference is the very low number of

modes kept in LOMs, 3–14 in those considered here),

LOMs should still retain the fundamental characteristics of

the equations (conservation properties and the degree of

nonlinearity) to fulfill their interpretive role. And LOMs

remain widely employed even with ever-increasing com-

puter power since apart from their traditional uses, as noted

by Smith,47 “Although it is unreasonable to expect solutions

to low-dimensional problems to generalize to a million

dimensional spaces, so too it is unlikely that problems iden-

tified in the simplified models will vanish in operational

models”.

Finite-mode Hamiltonian approximations for 2D hydro-

dynamics with a major advantage that each model preserves

a maximal number of Casimirs were developed by Zeitlin;

such modeling, however, only works for flows on the 2D

torus and 2D sphere, and cannot be extended for 3D

hydrodynamics.48–50

There is extensive work on the Nambu formulation (a

generalization of the Hamiltonian one) of fluid dynamics

(e.g., Refs. 51–55), in particular on finite models of

RBC.16,56,57 Here, we only mention two G-models that are

Nambu systems: the Volterra gyrostat16 and the 4-

TABLE III. Skewness and kurtosis of the observed and modeled time series.

Skewness Kurtosis

Observed series (Fig. 1) 0.83 4.1

Model A (Eqs. (19)) 0.84 3.9

Model B (Eqs. (22)) 0.81 4.2
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dimensional gyrostat17 equivalent to the 6-mode LOM sug-

gested by Bihlo and Stoffer16 as an improvement on the

Lorenz-63 model.

In contrast to these and other approaches, which may

leave out some useful energy-conserving LOMs, G-models

(a) permit one to easily find out if a selection of modes

results in an energy-conserving LOM, (b) offer a way to pos-

sibly modify the resulting LOM to a Hamiltonian one, and

(c) provide a form common to all known physically sound

LOMs, offering a general framework for developing efficient

LOMs for atmospheric dynamics.

Of particular importance is the example discussed in

Sec. III. Various problems in atmospheric time series analy-

sis are currently handled via fitting traditional time series

models to the data at hand, but finding among them those

adequate for atmospheric data is challenging due to inher-

ently nonlinear DGMs and prohibitively short observed

records. The latter, in fact, are so short sometimes that it is

difficult to even decide on which of several types of models

is more appropriate.58 Purely statistical approaches are well

justified in areas, where data only are available, but an im-

portant advantage of atmospheric dynamics is that in addi-

tion to often problematic data, a considerable part of our

knowledge is provided by the governing equations. Current

time series models, however, do not specifically utilize the

physics the equations contain and often involve unrealistic

assumptions.

This paper suggests incorporating the underlying equa-

tions in the development of time series models in the form of

the G-models, which are derived from these equations and,

while being much simpler, inherit their fundamental proper-

ties. Unlike large numerical models, G-models can be used

to generate numerous records required, among other things,

in Monte Carlo testing as, for example, the Lorenz-96 model

in Ref. 59.

Besides the mentioned above advancements in resam-

pling methodologies (increasingly employed in atmospheric

data analyses, e.g., Ref. 60), G-models may be especially

helpful in atmospheric applications of the extreme value

theory, where problems with commonly used time series

analysis models and methods are exacerbated.61 For exam-

ple, coherent structures indicated in turbulent flows by ele-

vated skewness and kurtosis39 may provide the underlying

physical mechanism that leads to extreme events: it is due to

coherent structures that tails of probability density functions

become heavy, thereby increasing probabilities of

extremes.62 Meanwhile, considerable progress was made

recently in transferring the extreme value theory from ran-

dom phenomena to chaotic dynamical systems,63 the Lorenz

model (4) in particular.64 As G-models beyond model (4) are

also beginning to attract attention in physical and mathemati-

cal studies (e.g., Refs. 16, 45, 57, and 65–69), further pro-

gress in employing them in atmospheric studies is

anticipated.
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